fixed lagging issue
This commit is contained in:
parent
088f772b5f
commit
67cee95f1e
78
main.py
78
main.py
@ -1,4 +1,5 @@
|
|||||||
import math
|
import math
|
||||||
|
import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2 #pip install opencv-python ||| pip3 install opencv-contrib-python==4.4.0.46
|
import cv2 #pip install opencv-python ||| pip3 install opencv-contrib-python==4.4.0.46
|
||||||
|
|
||||||
@ -8,45 +9,44 @@ from PIL import ImageFont
|
|||||||
|
|
||||||
from deepface import DeepFace #pip install deepface
|
from deepface import DeepFace #pip install deepface
|
||||||
|
|
||||||
readings = np.array([])
|
cam = cv2.VideoCapture(0)
|
||||||
max_samples = 10
|
|
||||||
# img = cv2.imread("test.jpg")
|
|
||||||
cam = cv2.VideoCapture(1)
|
|
||||||
# cam.set(cv2.cv.CV_CAP_PROP_FPS, 10)
|
|
||||||
# cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 240)
|
|
||||||
# cam.set(cv2.CAP_PROP_FRAME_WIDTH, 320)
|
|
||||||
noFace = cv2.imread("noFace.png")
|
|
||||||
|
|
||||||
# ft = cv2.freetype.createFreeType2()
|
cameraMode = False
|
||||||
# ft.loadFontData(fontFileName='HalloweenFont.ttf',id=0)
|
TIMER = 5
|
||||||
# overlay = cv2.imread('feartext.png')
|
|
||||||
#custom resolution for CRT TV
|
|
||||||
# cam.set(3,768)
|
|
||||||
# cam.set(4,576)
|
|
||||||
|
|
||||||
#640 x 480
|
startScreen = cv2.imread("noFace.png")
|
||||||
|
|
||||||
if cam.isOpened():
|
if cam.isOpened():
|
||||||
while True:
|
while True:
|
||||||
ret, img = cam.read()
|
ret, img = cam.read()
|
||||||
if ret:
|
if cameraMode and ret:
|
||||||
face = cv2.resize(img, (120,160), interpolation = cv2.INTER_AREA)
|
prev = time.time()
|
||||||
#print(img.shape)
|
while TIMER > 0:
|
||||||
try:
|
ret, img = cam.read()
|
||||||
predictions = DeepFace.analyze(face,actions=['emotion'])
|
# cv2.putText(img, str(TIMER), (200, 250), cv2.FONT_HERSHEY_SIMPLEX, 7, (0, 255, 255), 4, cv2.LINE_AA)
|
||||||
|
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
|
||||||
|
img = Image.fromarray(img)
|
||||||
|
draw = ImageDraw.Draw(img)
|
||||||
|
font_size = 350
|
||||||
|
font = ImageFont.truetype("HalloweenFont.ttf", font_size)
|
||||||
|
draw.text((231, 50), str(TIMER), font=font,fill=(255,0,0,255))
|
||||||
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||||||
|
cv2.imshow('webcam',img)
|
||||||
|
# print(str(TIMER))
|
||||||
|
cur = time.time() #current time
|
||||||
|
if cur-prev >= 1:
|
||||||
|
prev = cur
|
||||||
|
TIMER = TIMER-1
|
||||||
|
key = cv2.waitKey(5) & 0xFF
|
||||||
|
if ord('q') == key:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
ret, img = cam.read()
|
||||||
|
predictions = DeepFace.analyze(img,actions=['emotion'])
|
||||||
fearPoint = predictions[0]["emotion"]["fear"]
|
fearPoint = predictions[0]["emotion"]["fear"]
|
||||||
|
|
||||||
readings = np.append(readings, fearPoint)
|
|
||||||
avg = np.mean(readings)
|
|
||||||
if len(readings) == max_samples:
|
|
||||||
readings = np.delete(readings, 0)
|
|
||||||
print("FEAR:" + str(fearPoint))
|
print("FEAR:" + str(fearPoint))
|
||||||
print("AVG" + str(avg))
|
if fearPoint>20:
|
||||||
|
cv2.imwrite('scared.jpg', img)
|
||||||
# for x in range(6):
|
|
||||||
# avgNumber = avgNumber + fearPoint
|
|
||||||
|
|
||||||
# print(avgNumber)
|
|
||||||
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
|
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
|
||||||
img = Image.fromarray(img)
|
img = Image.fromarray(img)
|
||||||
draw = ImageDraw.Draw(img)
|
draw = ImageDraw.Draw(img)
|
||||||
@ -58,13 +58,21 @@ if cam.isOpened():
|
|||||||
#print(30+math.floor(int(fearPoint)*580/100))
|
#print(30+math.floor(int(fearPoint)*580/100))
|
||||||
# ft.putText(img=img,text='TEST',org=(15, 70),fontHeight=60,color=(255, 255, 255),thickness=-1,line_type=cv2.LINE_AA,bottomLeftOrigin=True)
|
# ft.putText(img=img,text='TEST',org=(15, 70),fontHeight=60,color=(255, 255, 255),thickness=-1,line_type=cv2.LINE_AA,bottomLeftOrigin=True)
|
||||||
cv2.rectangle(img,(30,400),(610,450),(255,255,255), 5)
|
cv2.rectangle(img,(30,400),(610,450),(255,255,255), 5)
|
||||||
cv2.rectangle(img,(30,400),(30+math.floor(int(avg)*580/100),450),(255,255,255), -1)
|
cv2.rectangle(img,(30,400),(30+math.floor(int(fearPoint)*580/100),450),(255,255,255), -1)
|
||||||
cv2.imshow('webcam',img)
|
cv2.imshow('webcam',img)
|
||||||
except Exception as e:
|
cv2.waitKey(5000)
|
||||||
print(e)
|
|
||||||
|
|
||||||
cv2.imshow('webcam',noFace)
|
|
||||||
|
|
||||||
|
cameraMode = False
|
||||||
|
TIMER = 5
|
||||||
|
else:
|
||||||
|
cv2.imshow('webcam',startScreen)
|
||||||
|
|
||||||
key = cv2.waitKey(5) & 0xFF
|
key = cv2.waitKey(5) & 0xFF
|
||||||
|
if ord('t') == key:
|
||||||
|
cameraMode = True
|
||||||
if ord('q') == key:
|
if ord('q') == key:
|
||||||
break
|
break
|
||||||
|
|
||||||
cam.release()
|
cam.release()
|
71
realtime.py
Normal file
71
realtime.py
Normal file
@ -0,0 +1,71 @@
|
|||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import cv2 #pip install opencv-python ||| pip3 install opencv-contrib-python==4.4.0.46
|
||||||
|
|
||||||
|
from PIL import Image
|
||||||
|
from PIL import ImageDraw
|
||||||
|
from PIL import ImageFont
|
||||||
|
|
||||||
|
from deepface import DeepFace #pip install deepface
|
||||||
|
|
||||||
|
readings = np.array([])
|
||||||
|
max_samples = 10
|
||||||
|
# img = cv2.imread("test.jpg")
|
||||||
|
cam = cv2.VideoCapture(0)
|
||||||
|
# cam.set(cv2.cv.CV_CAP_PROP_FPS, 10)
|
||||||
|
# cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 240)
|
||||||
|
# cam.set(cv2.CAP_PROP_FRAME_WIDTH, 320)
|
||||||
|
noFace = cv2.imread("noFace.png")
|
||||||
|
|
||||||
|
# ft = cv2.freetype.createFreeType2()
|
||||||
|
# ft.loadFontData(fontFileName='HalloweenFont.ttf',id=0)
|
||||||
|
# overlay = cv2.imread('feartext.png')
|
||||||
|
#custom resolution for CRT TV
|
||||||
|
# cam.set(3,768)
|
||||||
|
# cam.set(4,576)
|
||||||
|
|
||||||
|
#640 x 480
|
||||||
|
|
||||||
|
if cam.isOpened():
|
||||||
|
while True:
|
||||||
|
ret, img = cam.read()
|
||||||
|
if ret:
|
||||||
|
# img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||||
|
face = cv2.resize(img, (120,160), interpolation = cv2.INTER_AREA)
|
||||||
|
#print(img.shape)
|
||||||
|
try:
|
||||||
|
predictions = DeepFace.analyze(face,actions=['emotion'])
|
||||||
|
fearPoint = predictions[0]["emotion"]["fear"]
|
||||||
|
|
||||||
|
readings = np.append(readings, fearPoint)
|
||||||
|
avg = np.mean(readings)
|
||||||
|
if len(readings) == max_samples:
|
||||||
|
readings = np.delete(readings, 0)
|
||||||
|
print("FEAR:" + str(fearPoint))
|
||||||
|
print("AVG" + str(avg))
|
||||||
|
|
||||||
|
# for x in range(6):
|
||||||
|
# avgNumber = avgNumber + fearPoint
|
||||||
|
|
||||||
|
# print(avgNumber)
|
||||||
|
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
|
||||||
|
img = Image.fromarray(img)
|
||||||
|
draw = ImageDraw.Draw(img)
|
||||||
|
font_size = 65
|
||||||
|
font = ImageFont.truetype("HalloweenFont.ttf", font_size)
|
||||||
|
text = "FEAR LEVEL"
|
||||||
|
draw.text((144, 308), str(text), font=font,fill=(255,0,0,255))
|
||||||
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||||||
|
#print(30+math.floor(int(fearPoint)*580/100))
|
||||||
|
# ft.putText(img=img,text='TEST',org=(15, 70),fontHeight=60,color=(255, 255, 255),thickness=-1,line_type=cv2.LINE_AA,bottomLeftOrigin=True)
|
||||||
|
cv2.rectangle(img,(30,400),(610,450),(255,255,255), 5)
|
||||||
|
cv2.rectangle(img,(30,400),(30+math.floor(int(avg)*580/100),450),(255,255,255), -1)
|
||||||
|
cv2.imshow('webcam',img)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
|
||||||
|
cv2.imshow('webcam',noFace)
|
||||||
|
key = cv2.waitKey(5) & 0xFF
|
||||||
|
if ord('q') == key:
|
||||||
|
break
|
||||||
|
cam.release()
|
BIN
scared.jpg
Normal file
BIN
scared.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 62 KiB |
Loading…
Reference in New Issue
Block a user